INFLUENCE OF FERTILIZATION ON FORAGE QUALITY OF THE SIMPLE MIXTURES BETWEEN Bromus inermis Leyss. AND Onobrychis viciifolia Scop.

Cătălia (CIOBANU) BOUREANU¹, Mihai STAVARACHE Costel SAMUIL¹, Vasile VÎNTU¹*  
e-mail: mihaistavarache@uaiasi.ro

Abstract

Temporary meadows are an important source of feed through both productivity and the quality of the forage obtained. Biomass quality obtained from temporary grassland is influenced by component species, their proportion in the mixture and by management system and use. The results of the study conducted revealed that the mineral fertilization achieve a higher quality forage, mainly influenced the type of mixture used and dosage. Thus, the highest content of crude protein, of 17.7 % (g·100 g⁻¹ DM), was recorded in the mixture Bromus inermis Leyss. 25% + Onobrychis viciifolia Scop. 75%, fertilized with N₁₀₀P₁₀₀, the difference compared to the control is very significant.

Key words: temporary meadows, CP, NDF, ADF, RFQ

Matters and method

The basic component of plants that compose forage is the cell. Plant cell consists of: primary cell wall (ADF consisting of cellulose and lignin), second wall (NDF consisting of hemicellulose, cellulose and lignin), cytoplasm and vacuole (Orloff S.B., Putnam D.H., 2007). Crude protein content shows the amount of nitrogen found in forage. Usually forage crude protein content varies with plant species that compose forage, the development stage of the plant at harvest and applied fertilization (Schroeder J.W., 1996). Crude protein content of the vegetables ranges on average from 13 to 19%, while the percentage of the grass is between 8 and 14%.

MATERIAL AND METHOD

The current study was conducted on a temporary meadow, organized in Ezareni farm, which is found in the Didactic Station of the University of Agricultural Sciences and Veterinary Medicine, is located on land sloping, with NE exposition, the soil type is cernoziom cambic weak leachate, loam-clay, humus content 4.2–4.8%, middle stocked with phosphorus (30–37 ppm.) and very well stocked in mobile potassium (235–320 ppm.), pH 6.5 to 6.9 in the soil layer 0–20 cm. The studied experiment analyzes two factors placed after the randomized blocks method in three repetitions with the objective of studying the role of mineral fertilizers in various doses, on the values that express the quality of the forage at species and simple mixture smooth brome (Bromus inermis Leyss.) and sainfoin (Onobrychis viciifolia

¹ “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Iași  
* coordinator
Scop.): determination of CP forage content (crude protein); the determination of NDF content (neutral detergent fiber); the determination of ADF content (acid detergent fiber); calculation of relative forage quality (RFQ). To achieve the objectives, it was organized in the spring of 2014, an experiment which studies two factors of type 5 x 4, with the following factors: Factor A = culture system, with five graduations: a₁ - Bromus inermis Leyss. 100% (control); a₂ - Bromus inermis Leyss. 75% + Onobrychis vicifolia Scop. 25%; a₃ - Bromus inermis Leyss. 50% + Onobrychis vicifolia Scop. 50%; a₄ - Bromus inermis Leyss. 75% + Onobrychis vicifolia Scop. 75%; a₅ - Onobrychis vicifolia Scop. 100%; Factor B = fertilization with four graduations: b₁ - unfertilized (control), b₂ - N₅₀P₅₀ kg/ha; b₃ - N₁₀₀P₁₀₀ kg/ha; b₄ - N₁₅₀P₁₅₀ kg/ha. Harvest was made at sainfoin flowering (25%), and the results were interpreted statistically by analysis of variance and limit differences calculation. The calculation of relative forage quality RFQ (Relative Forage Quality) was conducted using the following equation (Ward R., Ondarza M.B., 2008; Linn J.G., Martin N.P., 2012):

$$RFQ = \frac{DMI \times TDN}{1,23}$$

DMI (dry matter intake) = 120/NDF (%);
TDN (total digestible nutrients) = 4,898 + 89,796 x NEL (%);
NEL (net energy lactation) = 1.085 - 0.0124 x ADF (Mcal/kg).

For cataloging the obtained forage quality, we have used these quality classes (table 1):

<table>
<thead>
<tr>
<th>Quality classes</th>
<th>PB (g·100 g⁻¹ DM)</th>
<th>NDF (g·100 g⁻¹ DM)</th>
<th>ADF (g·100 g⁻¹ DM)</th>
<th>RFQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - Excellent</td>
<td>&gt;19</td>
<td>&lt;40</td>
<td>&lt;31</td>
<td>&gt;151</td>
</tr>
<tr>
<td>1 - Very good</td>
<td>17-19</td>
<td>40-46</td>
<td>31-35</td>
<td>125-151</td>
</tr>
<tr>
<td>2 - Good</td>
<td>14-16</td>
<td>47-53</td>
<td>36-40</td>
<td>103-124</td>
</tr>
<tr>
<td>3 - Middle</td>
<td>11-13</td>
<td>54-60</td>
<td>41-42</td>
<td>87-102</td>
</tr>
<tr>
<td>4 - Weak</td>
<td>8-10</td>
<td>61-65</td>
<td>43-45</td>
<td>75-86</td>
</tr>
<tr>
<td>5 - Very weak</td>
<td>&lt;8</td>
<td>&gt;65</td>
<td>&gt;45</td>
<td>&lt;75</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSIONS

Analyzing the influence of interaction between species or used mixture and fertilizer on plants content of CP (g·100 g⁻¹ DM) (table 2) it is noted that the higher crude protein content of 17.7 g·100 g⁻¹ DM it was recorded in the mixture Bromus inermis Leyss. 25% + Onobrychis vicifolia Scop. 75%, fertilized with N₁₀₀P₁₀₀, the difference compared to the control is very significant. A high crude protein content, of 17.1 g·100 g⁻¹ DM was recorded in variant with Onobrychis vicifolia Scop. 100%, unfertilized (N₀P₀). The lowest crude protein content of 11.6 g·100 g⁻¹ DM was recorded in the control variant, with Bromus inermis Leyss. 100%, unfertilized (N₀P₀).

Analysis of the influence on interaction between species or used mixture and fertilizer on plant NDF content is observed that the highest content in NDF, of 61.5 g·100 g⁻¹ DM, was recorded in variant with Onobrychis vicifolia Scop. 100%, fertilized with N₁₅₀P₁₅₀. A high NDF content, of 60.3 g·100 g⁻¹ DM, was observed in the mixture Bromus inermis Leyss. 25% + Onobrychis vicifolia Scop. 75%, fertilized with N₁₀₀P₁₀₀. The lowest NDF content of 41.3 g·100 g⁻¹ DM it was recorded in the control variant (Bromus inermis Leyss. 100%, unfertilized).

Analysis of the influence on the interaction between species or used mixture and fertilizer in the plant ADF content (table 2) it is noted that the highest content in the ADF, of 45.5 g·100 g⁻¹ DM, it was obtained from variant with only Onobrychis vicifolia Scop. 100% fertilized cu N₁₅₀P₁₅₀. The lowest content in the ADF, of 29.7 g·100 g⁻¹ DM, it was registered in the control variant (Bromus inermis Leyss. 100%, unfertilized). Regarding the influence of interaction between species or used mixture and fertilizer on forage quality relative (RFQ) is observed that the highest value RFQ of 165 was recorded in the control variant (Bromus inermis Leyss. 100%, unfertilized) The lower RFQ of 83 was obtained from variant with only Onobrychis vicifolia Scop. 100% fertilized cu N₁₅₀P₁₅₀.

Forage quality obtained was quantified using the parameters analyzed (CP, NDF, ADF and RFQ). Thus, if the influence of the interaction between the species or the mixture used and fertilization on the quality of the biomass obtained was a trend for improvement the content of CP with the increase in the amount of nutrients (based on NP) applied and with increased proportion in the mixture of Onobrychis vicifolia Scop. species.

On the other hand the digestibility of forage obtained, influenced by the values that represent the content of plant cell walls (NDF and ADF), followed a negative trend compared to the CP content. Accumulation of cell walls (NDF and ADF) shows a lower value relative forage quality (RFQ) resulting a reduction of expendability in obtained forage.
The influence of interaction between species or used mixture and fertilizer on forage quality

<table>
<thead>
<tr>
<th>Variant</th>
<th>CP</th>
<th>NDF</th>
<th>ADF</th>
<th>RFQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1 - Brous inermis Leyss. 100% (control)</td>
<td>11.6**</td>
<td>41.3**</td>
<td>29.7**</td>
<td>165**</td>
</tr>
<tr>
<td>a2 - Brous inermis Leyss. 75% + Onobrychis viciifolia Scop. 25%</td>
<td>12.7**</td>
<td>50.5***</td>
<td>36.6***</td>
<td>120***</td>
</tr>
<tr>
<td>a3 - Brous inermis Leyss. 50% + Onobrychis viciifolia Scop. 50%</td>
<td>13.7***</td>
<td>51.1***</td>
<td>37.8***</td>
<td>116***</td>
</tr>
<tr>
<td>a4 - Brous inermis Leyss. 25% + Onobrychis viciifolia Scop. 75%</td>
<td>14.7***</td>
<td>53.3***</td>
<td>40.1***</td>
<td>107***</td>
</tr>
<tr>
<td>a5 - Onobrychis viciifolia Scop. 100%</td>
<td>14.5***</td>
<td>44.2</td>
<td>36.0***</td>
<td>139***</td>
</tr>
</tbody>
</table>

Table 2

Analyzing the influence of the species or mixture used on the crude protein content (table 3) it is noted that the highest content of 16.4 g·100 g⁻¹ DM, was registered both in the mixture Brous inermis Leyss. 25% + Onobrychis viciifolia Scop. 75%, and also in the variant with just Onobrychis viciifolia Scop. 100%. Differences compared to the control being very significant. Lowest content of crude protein of 12.3 g·100 g⁻¹ DM was obtained in the control variant (Brous inermis Leyss. 100%). Influence of species or mixture used on plants NDF content is observed that in variant Onobrychis viciifolia Scop. 100% was obtained the highest content of plants in NDF of 53.7 g·100 g⁻¹ DM, and the lowest of 46.5 g·100 g⁻¹ DM, it was recorded in the control variant (Brous inermis Leyss. 100%).

Influence on plants ADF content of used mixture and species showed that the highest content in the ADF, of 43.4 g·100 g⁻¹ DM was obtained on the variant were Onobrychis viciifolia Scop. had 100%, and the lowest of 34.5 g·100 g⁻¹ DM, was recorded in control plot (Brous inermis Leyss. 100%).

Analysis of species or mixture used influence on the relative forage quality (RFQ) revealed that studied variants caused significant differences compared to control (table 3). In control variant Brous inermis Leyss. 100% was obtained the highest relative forage quality, of 137, and the lowest, of 101, was registered in Onobrychis viciifolia Scop. 100%, variant.

In terms of content on CP obtained, the study showed that a share of the species Onobrychis viciifolia Scop. in the mixture results an increase of the quality from grade 3 (middle) to 2 or 1 (good or very good).

In terms of forage content obtained in ADF and NDF, a larger share of the species Onobrychis viciifolia Scop. in the mixture causes a decline in its quality from grade 1 (very good) to grade 2 or 3 (good or middle).

Influence of species or used mixture on forage quality

<table>
<thead>
<tr>
<th>Variant</th>
<th>CP</th>
<th>NDF</th>
<th>ADF</th>
<th>RFQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1 - Brous inermis Leyss. 100% (control)</td>
<td>12.3**</td>
<td>46.5**</td>
<td>34.5**</td>
<td>137**</td>
</tr>
<tr>
<td>a2 - Brous inermis Leyss. 75% + Onobrychis viciifolia Scop. 25%</td>
<td>15.3**</td>
<td>50.9**</td>
<td>39.2**</td>
<td>115**</td>
</tr>
<tr>
<td>a3 - Brous inermis Leyss. 50% + Onobrychis viciifolia Scop. 50%</td>
<td>16.4***</td>
<td>52.6**</td>
<td>41.4**</td>
<td>107**</td>
</tr>
<tr>
<td>a4 - Brous inermis Leyss. 25% + Onobrychis viciifolia Scop. 75%</td>
<td>16.4***</td>
<td>53.7***</td>
<td>43.4***</td>
<td>101***</td>
</tr>
<tr>
<td>a5 - Onobrychis viciifolia Scop. 100%</td>
<td>16.4***</td>
<td>53.7***</td>
<td>43.4***</td>
<td>101***</td>
</tr>
</tbody>
</table>

LSD 0.05 = 1.4 4.2 3.7 16
LSD 0.01 = 2.0 6.2 5.4 23
LSD 0.001 = 3.1 9.3 8.1 34

Table 3
Analyzing the influence of fertilization on crude protein content (table 4) is observed that the highest content of 15.6 % g·100 g⁻¹ DM, it was recorded in variant fertilized with N₁₀₀P₁₀₀ and the lowest content of 14.0 % g·100 g⁻¹ DM, was obtained in the control variant (N₀₅₀P₀).

The influence of fertilization on plant NDF content showed that the highest content of 56.8 g·100 g⁻¹ DM, it was recorded in variant fertilized with N₁₅₀P₁₅₀ and the lowest content of 43.9 g·100 g⁻¹ DM, was obtained in the control variant (N₀₅₀P₀).

Fertilization had influence over the plants ADF content, causing the recording of significant differences with increasing fertilizer rates. Thus, the highest content of plants ADF, of 41.8 g·100 g⁻¹ DM, it was recorded at fertilized variant N₁₅₀P₁₅₀ and the lowest, of 36.0 g·100 g⁻¹ DM, was obtained from unfertilized variant (control variant).

Analyzing the influence of fertilization on the relative forage quality (RFQ) of obtained biomass, it was observed that the higher RFQ, of 141, was obtained from control variant (N₀₅₀P₀), while the lowest RFQ of 98 was recorded in N₁₅₀P₁₅₀ variant.

On average, application of fertilizers based on nitrogen and phosphorus did not change feed grade obtained, in terms of its content in CP. Values obtained falling within in class quality 2 (good). Greatest influence was manifested on the values of NDF, ADF and RFQ, where the forage quality was reduced from quality class 1 (very good) to quality class 3 (middle).

### CONCLUSIONS

In mixtures of *Brouss inermis* Leyss. and *Onobrychis viciifolia* Scop. fertilized with chemical fertilizers based on nitrogen and phosphorus it was observed a trend for improvement in the CP content once with increasing amounts of fertilizer (based on NP) applied and also with increasing proportion of the species *Onobrychis viciifolia* Scop. in the mixtures.

Digestibility of forage obtained influenced by the values that represent content in plant cell walls. NDF and ADF, followed a negative trend compared to the CP content.

If it is desired to produce a good to very good quality forage, both in terms of protein and energy from the study conducted. it is recommended the use of a mixture composed from *Brouss inermis* Leyss. 50% + *Onobrychis viciifolia* Scop. 50% fertilized moderately with N₅₀P₅₀.

### REFERENCES


Understanding Forage Quality.pdf.


